Self-Organization and Entropy Decreasing in Neural Networks
نویسنده
چکیده
Dynamics of self-organization of binary patterns in a Hopfield model, a Boltzmann machine and a chaos neural network are investigated with the use of an ensemble average entropy and a short time average entropy. Time dependences of these entropies are calculated by numerical simulations when these models are solving traveling salesman problems. Decreasing of the entropies are observed in consequences of the self-organization at their initial time stages.
منابع مشابه
A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks
Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...
متن کاملStatistical Prediction of Probable Seismic Hazard Zonation of Iran Using Self-organized Artificial Intelligence Model
The Iranian plateau has been known as one of the most seismically active regions of the world, and it frequently suffers destructive and catastrophic earthquakes that cause heavy loss of human life and widespread damage. Earthquakes are regularly felt on all sides of the region. Prediction of the occurrence location of the future earthquakes along with determining the probability percentage can...
متن کاملAnalog Circuits for Self-Organizing Neural Networks Based on Mutual Information
A new self-organizing neural network concept based on mutual information is described in this paper. Comparing to conventional neural network structures, this organization greatly reduces the interconnections in neural network by using local interconnection based on statistical analysis, and eliminates the need to store large number of synaptic weights. The network is characterized by evolvable...
متن کاملCross-entropy embedding of high-dimensional data using the neural gas model
A cross-entropy approach to mapping high-dimensional data into a low-dimensional space embedding is presented. The method allows to project simultaneously the input data and the codebook vectors, obtained with the Neural Gas (NG) quantizer algorithm, into a low-dimensional output space. The aim of this approach is to preserve the relationship defined by the NG neighborhood function for each pai...
متن کاملA Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks
Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000